
Convolutional Kitchen Sinks for Transcription Factor
Binding Site Prediction

Alyssa Morrow∗ Vaishaal Shankar∗

Devin Petersohn Anthony Joseph Benjamin Recht Nir Yosef

{akmorrow,vaishaal,devin.petersohn,adj,brecht,niryosef} @ berkeley.edu

Abstract

We present a simple and efficient method for prediction of transcription factor
binding sites from DNA sequence. Our method computes a random approxima-
tion of a convolutional kernel feature map from DNA sequence and then learns a
linear model from the approximated feature map. Our method outperforms state-
of-the-art deep learning methods on five out of six test datasets from the ENCODE
consortium, while training in less than one eighth the time.

1 Introduction

Understanding binding affinity between proteins and DNA sequence is a crucial step in deciphering
the regulation of gene expression. Specifically, characterizing the binding affinity of transcription
factor proteins (TFs) to DNA sequence determines the relative expression of genes downstream from
a TF binding site.
The recent advent of sequencing technologies, such as chromatin immunoprecipitation with mas-
sively parallel DNA sequencing (ChIP-seq), provides us with genome-wide binding specificities for
187 TFs across 98 cellular contexts of interest from the ENCODE consortium [1]. These speci-
ficities can be thresholded to define high-confidence bound and unbound regions for a given TF.
Given the location of these binding sites, we can formulate a binary sequence classification problem,
classifying regions bound and unbound by a TF as positive and negative, respectively. Using a bi-
nary sequence classification model, we can predict binding sites in new cellular contexts, learning
regulatory behavior without the expense of ChIP-seq experiments.
String kernel methods are well understood and have been extensively used for sequence classifica-
tion [2, 3, 4]. Specifically, Fletez-Brant et al. and Lee et al. [5, 6] have applied string kernel methods
to the prediction of transcription factor binding sites. However, kernel methods require pairwise
comparison between all n training sequences and thus incur an expensive O(n2) computational and
storage complexity, making them computationally intractable for large data sets.
Recently, convolutional neural networks (CNN) have been successful for prediction of TF binding
sites [7, 8, 9]. CNNs generalize well by encoding spatial invariance during training. Fast convo-
lutions on a Graphical Processing Unit (GPU) allows CNNs to train on large datasets. However,
the actual design of the neural network greatly impacts model performance, yet there is no clear
understanding of how to design a network for a particular task. Furthermore there is no generally
accepted network architecture for the task of TF binding site prediction from DNA sequence.
In this work, we present a convolutional kernel approximation algorithm that maintains the spatial
invariance and computational efficiency of CNNs. Dubbed Convolutional Kitchen Sinks (CKS), our
algorithm learns a model from the output of a 1 layer random convolutional neural network [10].
All the parameters of the network are independent and identically distributed (IID) random samples

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



from a gaussian distribution with a specified variance. We then train a linear model on the output of
this network. Our results show that for five out of six transcription factors, CKS outperform current
state-of-the art CNN implementations, while maintaining a simple architecture and training eight
times faster than a CNN.

2 Method

The task of transcription factor (TF) binding site prediction from DNA sequence reduces to binary
sequence classification. We present a randomized algorithm for finding an embedding of sequence
data apt for linear classification (Algorithm 1). Our algorithm is closely related to the work of con-
volutional kernel networks, which approximates a convolutional kernel feature map via a nonconvex
optimization objective [11]. However, unlike Mairal et al. [11], we approximate the convolutional
kernel feature map via random projections in the style of Rahimi et al. [10, 12].
We will first define the convolutional n-gram kernel, and then analyze why it has desired properties
for the task of string classification. Note that we use the term n-gram to refer to a contiguous
sequence of n characters, whereas computational biology literature refers to the same concept as a
k-mer.

Definition 1 (Convolutional n-gram kernel). Let x, y be strings of length d from an underlying
alphabet A, and let H(x, y) denote the Hamming distance between the two strings. Let xi:j denote
the substring of x from index i to j − 1. Let n be an integer less than d and let γ be a real valued
positive number denoting the width of the kernel. The kernel function Kn,γ(x, y) is defined as:

Kn,γ(x, y) =
d−n∑
i=0

d−n∑
j=0

exp(−γH2(xi:i+n, yj:j+n)) (1)

To gain intuition for the behavior of this kernel, take γ to be a large value. It follows that
exp(−γH2(xi:i+n, yj:j+n)) ≈ 1[xi:i+n = yj:j+n].
This combinatorial reformulation results in the following well studied Spectrum Kernel (Defini-
tion 2).

Definition 2 (Spectrum Kernel). Let Sn(A) be the set of all length n contiguous substrings in A,
and #(x, s) count the occurrences of s ∈ x [4].

Kspec(x, y) =
∑

s∈Sn(A)

#(x, s)#(y, s) (2)

Other string kernel methods such as the mismatch [3] and gapped n-gram kernel [13] allow for
partial mismatches between n-grams. We note that decreasing γ in Equation 1 relaxes the penalty
of n-gram mismatches between disappoints, thereby capturing the behavior of the mismatch and
gapped n-gram kernels [3, 13]. Note that Equation 1 is computationally prohibitive, as it takes

Algorithm 1 Convolutional Kitchen Sink for sequences
input xi . . . xN ∈ Rd (input sequences), γ (width of kernel), n (convolution size), M (the approxi-

mation dimension, number of kitchen sinks)
1: for j ∈ {0 . . .M} do
2: wj ∼ N (0, γIn) Sample kitchen sink from gaussian
3: bj ∼ U(0, 2π) Sample phase from uniform disk
4: for i ∈ {0 . . . N} do
5: zij = wj ∗ xi Convolve filter with input sequence
6: cij = cos(zij + bj) Add phase and compute element-wise cosine

Note zij and cij are vectors in Rd−n+1

7: ϕ(xi)j =
√

2
M

d−n∑
k=0

cijk Average to get the jth output feature value for sequence xi

8: end for
9: end for

output ϕ(xi) . . . ϕ(xN )

2



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Deepbind (0.72)
CKS (0.78)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Deepbind (0.56)
CKS (0.57)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Deepbind (0.94)
CKS (0.96)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Deepbind (0.87)
CKS (0.91)

A) B) C) D)

Figure 1: Comparison of ROC between DeepBind on CKS on EGR1 and ATF2 for GM12878. A)
ROC for ATF2 on the DeepBind’s test set. B) ROC for ATF2 on the ENCODE set. C) ROC for
EGR1 on the DeepBind’s test set. D) ROC for EGR1 on the the ENCODE set.

Ω(nd2) to compute each of the N2 entries in the kernel matrix. Furthermore, the feature map
induced by the kernel in Equation 1 is infinite dimensional, so the kernel matrix is necessary.
Instead, we turn to a random approximation of Equation 1 (see Algorithm 1). Since our kernel
is a sum of non linear functions it suffices to define a feature map ϕ̂ on sequences x and y that
approximates each term in the sum from Equation 1:

exp(−γH(xi:i+n, yj:j+n)) ≈ ϕ̂(xi:i+n)
T ϕ̂(yj:j+n) (3)

Claim 1 from Rahimi et al. [12] states that for j ∈ {0 . . .M − 1}, if we choose ϕ̂(xi:i+n)j =√
2
M cos(wT

j xi:i+n+ bj), where wj ∼ N (0, γ), bj ∼ U(0, 2π), then ϕ̂(xi:i+n) satisfies Equation 3.
Note that to use Claim 1, we represent Hamming distance in Equation 1 as an L2 distance. We refer
to each wj as a “random kitchen sink". The result in in Rahimi et al. [12] (Claim 1) gives strong
guarantees that ϕ̂(x)T ϕ̂(y) concentrates exponentially fast to Equation 1, which means we can set
M , the number of kitchen sinks, to be small.
Algorithm 1 details the kernel approximation. Note that in Algorithm 1, line 1 we reuse wj across
all xi:i+n in Equation 1 by a convolution. Algorithm 1 is a finite dimensional approximation of the
feature map induced by the kernel in Equation 1 directly, circumventing the need for a kernel matrix.
The computational complexity of Algorithm 1 is O(NMdn).
For the task of TF binding site prediction we let alphabet A = {A, T,C,G}, and set n = 8, similar
to common parameter configuration for DNA sequence [5, 8, 13].

3 Results

We compare our CKS to DeepBind, a state-of-the-art CNN approach for predicting transcription
factor (TF) binding sites. We compare to DeepBind over other CNN methods [7, 9] due to its
primary attention to DNA sequence specificity and ability to identify fine grained (101 bp) locations
of binding affinity.

Table 1: Comparison of ROC Area under Curve values (AUC) between DeepBind and CKS tested
on 500 bound regions from ENCODE and 500 synthetic unbound regions.

TF Train
Cell Type

Test
Cell Type

Train
Size

Train
Time

DeepBind
AUC

CKS
AUC

ATF2 H1-hESC GM12878 10998 154s 0.72 0.77
ATF3 H1-hESC HepG2 8616 139s 0.94 0.95
ATF3 H1-hESC K562 8616 139s 0.83 0.84
CEBPB HeLa-S3 A549 121010 1620s 0.99 0.99
CEBPB HeLa-S3 K562 121010 1620s 0.99 0.98
EGR1 K562 GM12878 72996 772s 0.94 0.96
EGR1 K562 H1-hESC 72996 772s 0.87 0.92
EP300 HepG2 SK-N-SH 54828 519s 0.67 0.70
EP300 HepG2 K562 54828 519s 0.66 0.81
STAT5A GM12878 K562 13846 199s 0.65 0.79

3



3.1 Datasets

We train and evalute on datasets preprocessed from the ENCODE consortium. Because binding
affinity is TF specific, we use separate train and evaluation sets for each TF.
We use the same training sets as DeepBind’s publically available models. We then evaluate on
DeepBind’s test sets as well as a larger dataset processed directly from ENCODE.
DeepBind’s test sets consist of 1000 regions for each cell type over six TFs. Each set consists of
500 positive sequences extracted from regions of high ChIP-seq signal and 500 synthetic negative
sequences generated from dinucleotide shuffle of positive sequences [8].
The second test dataset consists of 100,000 regions extracted from ChIP-seq datasets for TFs ATF2
and EGR1 across multiple cell types. Positive sequences are extracted from regions of high ChIP-
seq signal. Negative sequences are extracted from regions of low ChIP-seq signal with exposed
chromatin.

3.2 Experimental Setup

Experiments for DeepBind and CKS were run on one machine with 24 Xeon processors, and 256
GB of ram and 1 Nvidia Tesla K20c GPU.
We train a linear model minimizing squared loss with an L2 penalty of λ on the output of the CKS
defined in Algorithm 1. We do not tune the hyper-parameters n (convolution size) and M (number
of kitchen sinks), and leave them constant at 8 and 8192 respectively. We tune the hyper paraemters
γ (kernel width) and λ on held out data from the train set. To assess generalization across cellular
contexts, we train and evaluate on separate cell types.

3.3 Evaluation

We compare DeepBind against CKS using area under the curve (AUC) of Receiver Operating Char-
acteristic (ROC). We choose AUC as a metric for binary classifcation due to its ability to measure
both TF binding site detection and false positive rates.
We detail our experimental results and compare to DeepBind’s pretrained models in Tables 1 and 2.
We also show ROCs for ATF2 and EGR1 on both datasets in Figure 3.
Our AUC is competitive (within 0.01) or superior to that of DeepBind except for ATF2 on MCF7
cell type. Furthermore on five out of six large ENCODE test sets, our AUC is strictly greater than
DeepBind.
We measure DeepBind’s training time on TF EGR1, trained on K562 with 72, 996 train sequences.
DeepBind’s training procedure takes 6497 seconds to learn 2123 parameters. For comparison, train-
ing time for CKS takes 712 seconds (Table 1) to learn 16384 parameters, which is approximately
eight times faster than DeepBind’s runtime.

4 Conclusion and Future Work

In this paper, we show that Convolutional Kitchen Sinks train eight times faster and has superior
predictive performance to CNNs. We note that our current work focuses on binding affinity in the
context of DNA sequence, making this model agnostic to specific cell contexts of interest. Because

Table 2: Comparison of ROC Area under Curve values (AUC) between DeepBind and CKS tested
on 100,000 bound and unbound regions from ENCODE. Because both experiments trained on the
same dataset, the train cell types, train times, and train sizes are the same as in Table 1.

TF Test
Cell Type

DeepBind
AUC

CKS
AUC

ATF2 GM12878 0.56 0.57
ATF2 MCF7 0.93 0.76
EGR1 GM12878 0.87 0.91
EGR1 H1-hESC 0.77 0.85
EGR1 HCT116 0.77 0.82
EGR1 MCF7 0.84 0.86

4



Algorithm 1 is not specific to DNA sequence, positional counts of chromatin accessibility and gene
expression data can be aggregated with current implementation to account for cell type specific
information. We leave this extension for future work.

References
[1] ENCODE Project Consortium et al. The ENCODE (Encyclopedia of DNA elements) project.

Science, 306(5696):636–640, 2004.

[2] Tommi S Jaakkola, Mark Diekhans, and David Haussler. Using the Fisher kernel method to
detect remote protein homologies. In Proceedings of ISMB, volume 99, pages 149–158, 1999.

[3] Eleazar Eskin, Jason Weston, William S Noble, and Christina S Leslie. Mismatch string kernels
for SVM protein classification. In Advances in Neural Information Processing Systems, pages
1417–1424, 2002.

[4] Christina S Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A string
kernel for SVM protein classification. In Pacific Symposium on Biocomputing, volume 7, pages
566–575, 2002.

[5] Christopher Fletez-Brant, Dongwon Lee, Andrew S McCallion, and Michael A Beer. Kmer-
SVM: a web server for identifying predictive regulatory sequence features in genomic data sets.
Nucleic acids research, 41(W1):W544–W556, 2013.

[6] Dongwon Lee, David U Gorkin, Maggie Baker, Benjamin J Strober, Alessandro L Asoni, An-
drew S McCallion, and Michael A Beer. A method to predict the impact of regulatory variants
from DNA sequence. Nature Genetics, 47(8):955–961, 2015.

[7] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep
learning-based sequence model. Nature methods, 12(10):931–934, 2015.

[8] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the
sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotech-
nology, 2015.

[9] David R Kelley, Jasper Snoek, and John L Rinn. Basset: Learning the regulatory code of the
accessible genome with deep convolutional neural networks. Genome research, 2016.

[10] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimiza-
tion with randomization in learning. In Advances in Neural Information Processing Systems,
pages 1313–1320, 2009.

[11] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel
networks. In Advances in Neural Information Processing Systems, pages 2627–2635, 2014.

[12] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Ad-
vances in Neural Information Processing Systems, pages 1177–1184, 2007.

[13] Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A Beer. Enhanced
regulatory sequence prediction using gapped k-mer features. PLOS Computational Bioliology,
10(7):e1003711, 2014.

5


	Introduction
	Method
	Results
	Datasets
	Experimental Setup
	Evaluation

	Conclusion and Future Work

